Skip to content
ASBESTOSIS CANCER CENTER

Asbestosis Cancer Center

asbestosiscancer.center

Menu
  • asbestosiscancer news
  • Treatment
  • Asbestosis Treatmeant
  • Tipes of Cancer
  • About us
    • Terms and Conditions
    • DMCA
    • Contact
    • Privacy Policy
    • DMCA
Menu

Using CAR T-cell therapy, scientists seek cure for cancer at the molecular level – UChicago News

Posted on May 17, 2022 by Asbestosis Cancer Center

Covering a story? Visit our page for journalists or call (773) 702-8360.
By Andrew Nellis
May 16, 2022
In the fight against cancer, a new tool has emerged that’s shifted the treatment landscape. CAR T-cell therapy, first approved for clinical use in 2017, uses a patient’s own re-engineered immune cells to attack cancer. It has proven to be particularly effective against certain types of lymphoma.
Its success represents the continued rise of immunotherapy, a class of treatments that amplify or alter the immune system in order to combat disease. Now, CAR T-cell therapy and other treatments like it are offering new hope in the fight against some of our most challenging diseases.
But developing these treatments is only possible because of the scientists who’ve dedicated their careers to growing our understanding of the immune system. Jun Huang, assistant professor of molecular engineering at the Pritzker School of Molecular Engineering at the University of Chicago, is one such researcher.
Armed with new, highly advanced tools, his work could have far-reaching implications, not only for the treatment of cancer but also for infection and autoimmunity more broadly.
Huang’s work has been described as molecular immunology with a bioengineering slant. He studies the fundamental mechanics behind the immune system with a particular focus on T cells (a type of white blood cell). He and his team use a combination of advanced microscopy, custom-designed tools, and ingenuity to study immunology at the molecular level, and they apply that knowledge to create novel treatments.
Already, Huang has applied his research to develop microscopic traps that catch and kill the coronavirus, solve long unanswered questions about cell metabolism, develop a new machine learning molecular imaging pipeline that can be used in vaccine development, and create transformative techniques for identifying CAR T-cells. With each advance, Huang gets that much closer to a goal he set in 2009 during his postdoctoral training.
“I want to cure cancer and HIV—two major diseases we cannot conquer yet,” he said. “Most people would naturally think they are very different diseases. But to us, treating both might be a T-cell problem. HIV infects CD4 T cells and paralyzes the human immune system, while tumor microenvironments drive T cell dysfunction and inhibits T cell killing of cancer cells. If we can effectively restore T cell functions, we might be able to treat both diseases, despite their distinct natures.”
The immune system is one of the most complex systems in the human body. Within it, billions of highly specialized cells measuring only a few micrometers in size work together to fend off a constant barrage of pathogens—things like viruses and bacteria. With so much happening, researchers have yet to untangle some of our immune system’s more complex mechanisms. In the case of CAR T-cell therapy, for example, we don’t completely understand why it’s effective against some forms of cancer but not others.
Huang aims to fill the gaps in our understanding by using multiple state-of-the-art technologies and custom in-house devices to study immune cells at the molecular level. His results have already opened new doors in cellular research.
In May 2020, Huang’s lab combined publicly available software and machine learning techniques to create a pipeline for analyzing lattice light-sheet microscopy data. Lattice light-sheet microscopy provides high-resolution, 3D video of cells. Huang’s pipeline, Lattice Light-Sheet Microscopy Multi-dimensional Analyses (LaMDA), effectively crunches the vast amounts of data generated by lattice light-sheet microscopy, allowing researchers to use individual molecules as data points. LaMDA could have numerous medical applications, such as drug testing and vaccine development, in addition to expanding the knowledge of T-cell biology.
In June 2021, Huang and his team used a combination of genetically encoded biosensors, machine learning, and super-resolution microscopy to visually observe glycolysis—the process by which cells metabolize glucose—at the molecular level. They found that when cells move and contract, they consume more energy and that they uptake glucose through a previously unknown receptor—both insights that could further research into a wide range of diseases. For instance, if physicians could inhibit glycolysis in lung endothelial cells, they could reduce the effects of acute respiratory syndrome in COVID-19 patients.
Huang believes machine learning will be central to advancing our understanding of the immune system, helping researchers like himself process the vast amounts of data generated by super-resolution imaging. When speaking about his work, Huang points out that his tools provide a means to an end—that he pursues technology not for its own sake, but to answer questions about immunology and ultimately to develop useful treatments. It’s a philosophy he landed on during his postdoctoral training. 
“I worked in an immunology lab and there was lots of collaboration with MDs and MD/PhDs,” Huang said. “That experience changed how I thought. It made me think, ‘What do doctors actually think is important? What do patients really need? How can we connect the basic science, the basic research to provide that?’ As an engineer, that is something I want to do.”
In early 2020, when the coronavirus pandemic first emerged, researchers everywhere turned their attention to addressing the crisis. For Huang and his team, it was a chance to apply their advanced study of immunology to a new threat. Although they had not previously studied COVID-19, immunological research by its nature can be quickly adapted to emerging diseases. In this case, the researchers pivoted their study of exosomes, which are small vesicles secreted from cancer cells that suppress the immune system, toward SARS-CoV-2. The team believed they could use that same mechanism to fight the virus that causes COVID.
Postdoctoral scholar Min Chen and graduate student Jill Rosenberg led the project and began by investigating the binding mechanisms behind SARS-CoV-2, a spike-like protein on its surface that binds to ACE2 receptors protein on human cells.
The team then engineered nanoparticles with a high density of ACE2 proteins on their surface, creating a cellular lure that no covid virus could resist. They also included neutralizing antibodies in the design so that once the virus was captured, the body’s immune cells would quickly engulf and destroy the trap, virus and all.
Early tests in mouse models showed the traps to be effective in containing and eliminating the virus. They then tested the traps using a pair of donated human lungs connected to a perfusion device and ventilator. They found that the nanotraps were able to completely block the virus from infecting the lungs.
The team is now investigating ways their nanotraps can be applied to other variants of the virus and has begun talks with pharmaceutical companies to license the technology.
From fundamental science to clinical treatment, the nanotraps developed by Huang and his team represent the potential of his research.
Looking to the future, Huang plans to adapt even more technology in his study of immunology and develop immunotherapy. Huang hopes that with such technologies he will someday fulfill the goal he set so many years ago.
—Adapted from a story first published on the PME website.
For the first time, researchers visualize metabolic process at the…
UChicago scientists design ‘nanotraps’ to catch and clear coronavirus…
Get more with UChicago News delivered to your inbox.
story
podcast
From green burials to DIY funerals, how death in America is changing
story
Core knowledge
story
story
Library
Faculty Awards
The College
Fermilab
Phoenix Sustainability Initiative
Data Science Institute
Meet a UChicagoan

See also  Cancer-causing foods that you should stop eating right now - Hindustan Times

Beinecke Scholarship
University of Chicago
Office of Communications
5801 S. Ellis Ave., Suite 120, Chicago, IL 60637
(773) 702-8360
news@uchicago.edu

source

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recent Posts

  • artnet : Sotheby’s Sold a Jean Prouv Table for $1.6 Million Last Month—But Didn’t Mention It Might Contain Asbestos
  • Don’t Follow This Tip From Julia Child’s 1970s Bread Recipe!
  • Sotheby’s Sold a Jean Prouvé Table for $1.6 Million Last Month—But Didn’t Mention It Might Contain Asbestos
  • On Asbestos LRB 21 July 2022
  • Asbestos health war: FS residents running out of patience

Recent Comments

  1. selection of modern and classic books waiting to be discovered. All free and available in most ereader formats. download free books https://www.skylineuniversity.ac.ae/advisory-council on Stem cells could help prevent diabetes onset from cancer immunotherapy – New Atlas
  2. selection of modern and classic books waiting to be discovered. All free and available in most ereader formats. download free books https://www.skylineuniversity.ac.ae/advisory-council on Particles released by red blood cells are effective carriers for anti-cancer immunotherapy – Science Daily
  3. selection of modern and classic books waiting to be discovered. All free and available in most ereader formats. download free books https://www.skylineuniversity.ac.ae/advisory-council on Dairy products linked to increased risk of cancer – Medical Xpress
  4. selection of modern and classic books waiting to be discovered. All free and available in most ereader formats. download free books https://www.skylineuniversity.ac.ae/advisory-council on The nanodrug that attacks cancer twice: Novel RNA technology: Boosting personalized cancer care – Science Daily
  5. selection of modern and classic books waiting to be discovered. All free and available in most ereader formats. download free books https://www.skylineuniversity.ac.ae/advisory-council on Immune System Attacks Itself in a Rare Type of Blood Cancer – Technology Networks
  • artnet : Sotheby’s Sold a Jean Prouv Table for $1.6 Million Last Month—But Didn’t Mention It Might Contain Asbestos
  • Don’t Follow This Tip From Julia Child’s 1970s Bread Recipe!
  • Sotheby’s Sold a Jean Prouvé Table for $1.6 Million Last Month—But Didn’t Mention It Might Contain Asbestos
  • On Asbestos LRB 21 July 2022
  • Asbestos health war: FS residents running out of patience
  • Asbestosis Treatmeant
  • asbestosiscancer news
  • Tipes of Cancer
  • Treatment

Info

  • Aviso Legal
  • Contact
  • Personalizar Cookies
  • Política de Cookies
  • Política de Privacidad
  • DMCA
  • Terms and Conditions
  • artnet : Sotheby’s Sold a Jean Prouv Table for $1.6 Million Last Month—But Didn’t Mention It Might Contain Asbestos
  • Don’t Follow This Tip From Julia Child’s 1970s Bread Recipe!
  • Sotheby’s Sold a Jean Prouvé Table for $1.6 Million Last Month—But Didn’t Mention It Might Contain Asbestos
  • On Asbestos LRB 21 July 2022
  • Asbestos health war: FS residents running out of patience

Alterations In The Psychosocial Health Of Individuals Affected By Asbestos PoisoningASBESTOSIS CANCER CENTER

▶️ Alterations In The Psychosocial Health Of Individuals Affected By Asbestos Poisoning One hundred and eighty patients got involved, with 110 constant individuals affected by breathing diseases created through asbestos poisoning and 70 healthy subjects of the same age group. All the individuals were male.

  • asbestosiscancer news
  • Treatment
  • Asbestosis Treatmeant
  • Tipes of Cancer
  • About us
    • Terms and Conditions
    • DMCA
    • Contact
    • Privacy Policy
    • DMCA
©2022 Asbestosis Cancer Center | Built using WordPress and Responsive Blogily theme by Superb
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Do not sell my personal information.
Cookie SettingsAccept
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT